
Introduction to Dynamic Programming

1 Fibonacci Again!
Let us consider the problem to find the nth fibonacci number. Here’s the infamous recursive algorithm
to solve the problem:

i n t f i b o n a c c i ( i n t n ) {
i f ( n == 1) re turn 1 ;
i f ( n == 2) re turn 1 ;
re turn f i b o n a c c i ( n−1) + f i b o n a c c i ( n−2);

}

While this algorithm is correct, it is terribly slow! Suppose I want to find fibonacci(6), then the
recursion will call fibonacci(3) three times! Furthermore, each time I invoke fibonacci(3), I’ll call
fibonacci(2) and fibonacci(1). Do I really need to recalculate fibonacci(3) every time I call it? Of
course not! Instead, we can ”remember” the solution:

/ / f i b [ i ] w i l l s t o r e t h e r e s u l t o f f i b o n a c c i ( i ) . I n i t i a l l y a l l 0 .
i n t [ ] f i b = new f i b [ 3 2 ] ;

i n t f i b o n a c c i ( i n t n ) {
i f ( n == 1) re turn 1 ;
i f ( n == 2) re turn 1 ;
i f ( f i b [ n ] != 0) re turn f i b [ n ] ; / / a l r e a d y c a l c u l a t e d f i b o n a c c i ( n )

re turn f i b [ n ] = f i b o n a c c i ( n−1) + f i b o n a c c i ( n−2);
}

This algorithm is in fact dynamic programming! Let us analyze the algorithm more carefully:

1. We used the recurrence relation fibonacci(n) = fibonacci(n-1) + fibonacci(n-2). Essentially,
we broke the problem of finding nth Fibonacci number into smaller subproblems - finding the
(n-1)th and (n-2)th fibonacci number.

2. We characterized the problem of finding the nth fibonacci number by a single integer n. This is
the state of the problem.

3. We realized that we might be solving the same subproblem multiple times, so we can optimize
the performance by remembering our solution for the subproblem.

2 Dynamic Programming - Defined Formally
Dynamic programming is essentially a divide and conquer algorithm. We use a recursive algorithm
to solve the problem by solving its subproblems, and we remember to remember the solution to the
subproblem so we don’t do extra work. There are 2 key components to a dynamic programming
algorithm: the states and the recurrence relation.



2.1 States
The state is how we use to describe the problem/subproblem. When we define the state, we must
adhere to the following properties:

• The state must uniquely describe the problem/subproblem.

• There is exactly one state to describe a particular problem/subproblem. In other words, how we
reached this subproblem should not affect how the state is defined.

2.2 Recurrence Relation
The recurrence relation is the ”formula” that allow us to construct the solution of the current problem
based on the solutions of the subproblems. The recurrence relation is defined based on the state. Thus,
the formula can only depend on the information encoded by the state. The important thing to note is
that the recurrence can not be ”circular”. In other word, the recurrence relation cannot depend on the
result of what we are trying to find. This will lead to infinite recursion.

2.3 Implementation
Once we have define the state and the recurrence relation, the next step is to implement it. Suppose
we have defined the state of the problem by described the class State and the solution we want is
described the by class Solution. The pseudocode to implement the DP algorithm is as follow:

/ / used t o s t o r e t h e s o l u t i o n s f o r subprob l ems
Map<S t a t e , S o l u t i o n > memo ;

S o l u t i o n DP( S t a t e s ) {
/ / base case o f r e c u r r e n c e
i f ( s == b a s e c a s e ) re turn b a s e s o l u t i o n ;

/ / i f t h e s o l u t i o n has a l r e a d y been found
i f (memo . c o n t a i n s K e y ( s ) ) re turn memo . g e t ( s ) ;

/ / f i n d t h e s o l u t i o n u s i n g t h e r e c u r r e n c e r e l a t i o n s h i p
S o l u t i o n ans = r e c u r r e n c e r e l a t i o n ( s ) ;

/ / s t o r e and r e t u r n t h e s o l u t i o n
memo . p u t ( s , ans ) ;
re turn ans ;

}

Note that in the pseudocode, I used a Map to remember the solution for the state. In general, it is
better to encode the state using integers, and then use an (multi-dimensional) array to store the results.



3 Putting It Together
From the previous section, it’s not hard to see that the hardest part to come up with DP algorithm is
to define the state and find the recurrence relation. While this may seem easy, there are a few points
to keep in mind:

• We are storing the solution for each state and we have limited memory. So the total number of
states, or called the state space cannot be too large (eg. 2n when n = 100).

• The recurrence relation MUST NOT BE CIRCULAR.

• We also have a limited amount of time to run our algorithm. In general, the run-time complexity
of the DP algorithm is O(state space ∗ recurrence relation). So even if the state space is small
enough, we must take care that our recurrence relation is not overly complex.

4 Example
A classical problem in DP is the coin changing problem. Suppose there are several denominations of
coins in a currency and you are trying to make a particular amount N . Assuming that you have an
infinite number of coins of each denomination, what is the minimum number of coins you need? The
state of the problem is fairly easy to see (there isn’t much variables involved). The state is simply the
amount that we are trying to make - we’ll represent the state of trying to make the change for n by the
integer n. The recurrence relation then follows:

f(n) = 1 + min
denominations d

f(n− d)

i n t memo [ 1 2 8 ] ; / / i n i t i a l i z e d t o −1

i n t m i n c o i n ( i n t n ) {
/ / base c a s e s
i f ( n < 0) re turn INF ;
i f ( n == 0) re turn 0 ;
i f (memo[ n ] != −1)

/ / r e c u r r e n c e r e l a t i o n
i n t ans = INF ;
f o r ( i n t i = 0 ; i < num denomina t ion ; ++ i )

ans = min ( ans , m i n c o i n ( n − d e n o m i n a t i o n s [ i ] ) ) ;

re turn memo[ n ] = ans + 1 ;
}


